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Abstract 
 A basic problem in flight dynamics is the 
mathematical formulation of the aerodynamic model 
for aircraft. This study is part of an ongoing effort at 
NASA Langley to develop a more general formulation 
of the aerodynamic model for aircraft that includes 
nonlinear unsteady aerodynamics and to develop 
appropriate test techniques that facilitate identification 
of these models. A methodology for modeling and 
testing using wide-band inputs to estimate the unsteady 
form of the aircraft aerodynamic model was developed 
previously but advanced test facilities were not 
available at that time to allow complete validation of 
the methodology. The new model formulation retained 
the conventional static and rotary dynamic terms but 
replaced conventional acceleration terms with more 
general indicial functions. In this study advanced 
testing techniques were utilized to validate the new 
methodology for modeling. Results of static, 
conventional forced oscillation, wide-band forced 
oscillation, oscillatory coning, and ramp tests are 
presented. 

Nomenclature 
Only the main symbols are introduced here; other 
symbols are defined in the paper. 
A, B, C numerator transfer function coefficients 
b wing span, m 
a, b1, c indicial function parameters 
c  mean aerodynamic chord, m 
CL, CN lift and normal force coefficient 
Cm pitching moment coefficient 

IAR inclined-axis rolls or oscillatory coning 
J cost function 
k non-dimensional frequency, k= ω l /V 
l  characteristic length, l = c /2 
PSD power spectral density 
q pitch rate, rad/sec 
s Laplace transform variable 
SF single frequency 
t time, sec 
V airspeed, m/sec 
v measurement noise 
WB wide band 
Z vector of output measurements 
α angle of attack, rad 
β sideslip angle, rad 
η state variable in unsteady model 
θ unknown parameter vector 
σ 2 variance 
τ dummy integration variable 
τ1 non-dimesional time constant 
φ bank angle, rad 
ω angular frequency, rad/sec 

superscripts, subscripts 
 estimate (superscript) 
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Introduction 
 A basic problem in flight dynamics is the 
mathematical formulation of the aerodynamic model 
for aircraft. Aerodynamicists have investigated this 
problem and in turn the problem of how to test in wind 
tunnels to obtain model parameters since the early days 
of flight. Today the problem of predicting aerodynamic 
response for arbitrary aircraft motion has not been 
completely solved. The conventional formulation is to 
assume the aerodynamic forces and moments can be 
represented by a differentiable function and therefore 
expanded in Taylor series with only first order linear 
terms (stability and control derivatives) retained [1]. 
This formulation has only been effective in certain 
portions of the flight envelope where nonlinear or 
unsteady effects are either not present or relatively 
benign. As flight-maneuvering capability has expanded 
so have limitations of the conventional aerodynamic 
model to predict aircraft responses in flight. In 
addition, as efforts to develop new mathematical 
models have proceeded, the limitations of conventional 
test techniques have also been realized.  

 In reference [2] limitations of the conventional 
linear aerodynamic model for rigid-body aircraft and 
conventional forced-oscillation testing were noted. A 
methodology for modeling and testing to estimate an 
unsteady form of the model was presented. The new 
formulation retained the conventional static and rotary 
dynamic terms but replaced conventional acceleration 
terms (derivatives with respect to angle of attack rate 
or sideslip rate) with more general indicial functions. 
In addition, a frequency domain method for data 
analysis was presented to estimate all the terms in the 
new aerodynamic model at each test condition. The 
approach only required the use of a conventional 
forced-oscillation test rig, although the test rig was 
required to provide wide-band inputs. This approach 
substantially improved upon conventional one-
frequency-at-a-time forced-oscillation tests by 
reducing the test matrix size and providing 
substantially more information content. The 
methodology was demonstrated on a longitudinal 
example using a 10% scale model of the F-16XL 
aircraft. 

 Ideally, validation of any methodology is 
accomplished by comparisons with independent 
identification methods and experimental tests showing 
the same results and by accurate prediction of 
aerodynamic response. In this study an effort is made 
to apply a variety of methods and tests that lead to an 

effective validation of the new methodology. 
Previously, only conventional forced-oscillation testing 
results were available for comparison. A limitation of 
conventional modeling and forced-oscillation testing is 
that only in-phase and out-of-phase aerodynamic terms 
can be estimated. These terms are frequency and 
amplitude dependent and represent combinations of 
stability derivatives with acceleration terms. 
Consequently, direct comparison of separate estimates 
of rotary damping and unsteady terms could not be 
made. More recently, a facility with an advanced 
dynamic test capability became available for validating 
the new methodology and for further investigation into 
nonlinear unsteady aerodynamic modeling. 

 For this study, validation experiments were made 
possible by performing tests using an advanced 
dynamic test rig at Rolling Hills Research Company 
(RHRC), formerly Eidetics Corporation. This test rig 
was developed at RHRC through a Navy Phase II 
SBIR completed in June 2000 [3]. The new rig was 
designed to allow forced-oscillation, coning, 
oscillatory coning, and combined-axis rotation 
experiments in the RHRC water tunnel. With a Phase 
III SBIR, through NASA Langley Research Center, 
further enhancements to maximize dynamic testing 
accuracy and capability were added, including wide-
band input testing. As part of the effort under the Phase 
III SBIR, several advanced experiments have been 
performed to apply the new methodology proposed in 
[2] and to run validating experiments. In addition, flow 
visualization experiments, under static and dynamic 
conditions, have been performed to further support this 
effort. 

 In this paper one linear unsteady aerodynamic 
model is postulated for the experiments. However, 
different model structures are presented since each 
lends itself to a different method of identification. Two 
independent methods are used to identify the model 
and to validate the estimation techniques, themselves. 
Besides the first method under evaluation from [2], a 
second method called 2-Step regression [4] is used for 
comparison. Further validation of the estimated model 
is shown by testing the prediction capability of the 
model on data not used in the identification process. 
For these validation tests, predicted and measured 
responses are compared for two types of experiments: 
(1) ramp-up and hold tests at different rates and (2) 
small-amplitude forced oscillation tests at different 
frequencies.  

 Four different types of experimental data provide 
final validation of the methodology under evaluation. 
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First, wide-band (WB) forced-oscillation experiments 
are performed to allow application of the methodology. 
This results in a general unsteady model that can be 
validated against the remaining tests. Second, single-
frequency (SF) forced-oscillation data are analyzed 
using harmonic analysis to get conventional in-phase 
and out-of-phase coefficients. These coefficients can 
be compared with those determined directly from the 
unsteady model. Third, inclined-axis oscillatory coning 
experiments or inclined-axis rolls (IAR) allow 
estimation of frequency dependent acceleration terms 
[5]. Separation of these terms, normally combined in 
conventional models, allows for direct comparison 
with that predicted by the unsteady model. Fourth, 
static data are used to confirm the estimation process is 
working correctly by comparing, for example, lift 
curve slope from the model with that calculated 
directly from the static lift curve.  

Model Postulation 
 Results from wind tunnel forced-oscillation tests 
show that the resulting combinations of stability 
derivatives depend on the frequency of the oscillations, 
amplitude, and mean angle of attack. This dependency 
contradicts the basic assumption that stability 
derivatives are time invariant. The effect of frequency 
on the aerodynamic parameters is related to unsteady 
aerodynamics as explained in [6]. In this reference the 
aerodynamic model was expressed in the form of state-
space equations. Later, in [7], the same problem was 
addressed by using indicial functions. In [7] the 
indicial function was postulated in models for 
aerodynamic coefficients as a simple exponential 
function 

1(1 )b ta e c− +  

The unknown aerodynamic parameters in the complete 
aerodynamic model can be estimated in different ways. 
Two approaches have been established, namely, a 2-
step linear regression [4] and a maximum likelihood 
(ML) method [2]. Both approaches are validated by 
this study.  

 As an example, lift is considered in the form 
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where )(tCLα
 and )(tC

qL  are the indicial functions, 

)0(LC  is the initial value of LC , l  is the characteristic 
length, and V is the airspeed.  Two assumptions were 
adopted to allow simplification of the model used in 
the analysis of measured data: a) the effect of )(tq  on 
the lift can be neglected and b) the indicial function 

)(tCLα
 can be expressed as 
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The simplified model, which takes into account 
increments with respect to steady state conditions, has 
the form 
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where )(∞
αLC  and ( )LqC ∞  are the rates of change 

with α and q evaluated in steady flow. By introducing 
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the state-space form of (3) is 
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 Applying the Laplace transform to Eq. (4), the 
transfer function for the lift coefficient is obtained as  

2

1
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where s is the Laplace transform parameter and 
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The next model structure lends itself to the 2-step 
regression approach. For a one degree of freedom 
oscillatory motion with β=0 and 

sin( )
cos( )

A

A

t
q t
α α ω

α α ω ω
=
≡ =

  (7) 

The steady-state solution of (3) is 

( ) sin( ) cos( )L L LqC t C t C tα ω ω= +   (8) 

where, as shown in [7], the in-phase and out-of-phase 
components of )(tCL  are 

2 2
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2 2
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2 2
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L L

L Lq q
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k

α α
τ

τ
τ
τ

= −
+

= −
+

        (9) 

where 1 1,V b k
V

τ ω= = .  

 An important element of the methodology is the 
general structure used for the aerodynamic model. It 
has a form that retains conventional static and rotary 
aerodynamic terms that have traditionally provided 
substantial engineering information to the flight 
dynamics community. Using lift as a representative 
example for any of the non-dimensional forces and 
moments, the general form can be written as equation 
(4). Similar equations can be written for the other force 
and moment equations. This structure allows easy 
interpretation of the model parameters by retaining 
conventional stability and control derivatives for static 
and dynamic terms. Unsteady terms are obtained by 
solving a first order differential equation with α-
dependent coefficients. This approach offers a 
straightforward model for simulation. 

Model Identification 
 In model equations (3), (4), (5), and (9) there are 
four unknown parameters 1( , , , )L Lqa b C Cα  or 

1( , , , )L Lqa C Cατ  that can be estimated, in general, 

from measured time histories of α(t), q(t), and CL(t). 
The first model equation, for 2-step linear regression, 
is obtained from (9) by expressing 

2 2
1

2 2 2 2
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then 

0 1L LqC a Cα τ= −         (10)  

where 

0 1( )L Lqa C a C α τ= + −    

As follows from the harmonic analysis of a linear 
system, the in-phase and out-of-phase components are 
obtained from the measurement as  
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where 2T π
ω

=  and cn  is the number of cycles of 

oscillation. Knowing the in-phase and out-of-phase 
components at various frequencies ω1, ω2, …, ωn, 
where n > 2, the parameters 0a  and τ1 can be obtained 
by applying the least-squares principle to (10). In the 
second step τ1 is assumed known and the least-squares 
estimates of ( , , )L Lqa C Cα  follows from model 

equation (9). 

 The second estimation technique uses maximum 
likelihood in the frequency domain. The model 
equation is given by (5) after expressing s as jω. In this 
case, the model used in the estimation has the form 

)()(
1

2
ωα

ω
ωωω

ib
iBCACL +

++−
=   (12) 

)(v)()( jjCjz L += , Nj ,...,2,1=  (13) 

where ( )LC ω and ( )α ω  are the Fourier transforms of 
)(tCL and )(tα , )(v j is the measurement noise 

assumed to be a Gaussian random complex sequence 
with zero mean and variance σ2, N is the number of 
frequencies at which the transformed input output data 
are known, and ω is the angular frequency. The 
maximum likelihood estimator minimizes the negative 
logarithm of the likelihood function  

{ }2

2

,
ˆ min ln ( ; , )NL Z

θ σ
θ θ σ= −  (14) 

where ZN = [z(1), z(2), …, z(N)] is a vector of output 
measurements and θ = [A, B, C, b1] is the vector of 
unknown parameters. Because (5) is nonlinear in the 
parameters, the estimation represents a nonlinear 
estimation problem. The initial values of parameters 
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for this technique were obtained from a linear 
regression using the cost function 

22
1

1

( ) ( )( ) ( ) ( )
N

L j j j
j

J C j b i A C iB jθ ω ω ω α
=

= + + − −∑ (15) 

 Oscillatory tests using a simple harmonic input 
are usually repeated at different frequencies. If the data 
are to be used to estimate (four) unsteady model 
parameters then six or more frequencies are 
recommended for better statistical results. In order to 
avoid the large number of runs, the use of a wide-band 
input was proposed in [2]. Specifically, the Schroeder 
sweep [8] was selected with specified amplitude to 
provide a flat power spectrum over a specified 
frequency range. Transforms of the time histories of 
the input and aerodynamic coefficients to the 
frequency domain were accomplished using a Discrete 
Fourier Transform (DFT) algorithm [9]. This algorithm 
utilizes a zoom transform and allows the transform to 
be performed over the frequency range corresponding 
to the wide-band input.  

Model Validation 
 Model validation is accomplished, in this study, 
by considering three kinds of validation tests. The first 
test uses two independent identification methods, 
applied to the same data. Obtaining the same model 
estimates confirms both the model and the estimation 
techniques. For this comparison, maximum likelihood 
estimation in the frequency domain, using model (12), 
is applied to the wide-band data. Then a comparison is 
made with results from the two-step regression method 
applied to the same data. For the two-step method, 
harmonic analysis is done first to produce the required 
in-phase and out-of-phase coefficients as inputs. 

 To ensure the methodology has produced an 
adequate model, validation data are required to test the 
predictive ability of the model. These data are 
additional measurements not used for identification of 
the model under test. For the second validation test, 
comparisons of measured and predicted responses are 
used. Test data are created using ramp inputs to drive 
the model at different maximum angular rates to excite 
unsteady behavior; inputs are applied at various angles 
of attack. Additional comparisons, to assess the 
predictive capability of the model, are made using 
sinusoidal SF forced-oscillation data at different 
frequencies. 

 The third set of validation tests use measurements 
from conventional SF forced-oscillation, inclined-axis 

rolls, and static runs. Each data type facilitates an 
independent estimate of parameters that can be 
compared against that predicted by the general 
unsteady model. From tests based on conventional 
single-frequency forced-oscillation data, in-phase and 
out-of-phase components are obtained using (11). 
These components can be compared with those 
obtained from (12) realizing that 

( )
( )

LC
U iV

ω
α ω

= +    (16) 

where,  

LU C α=    (17) 

1
LqV C

k
=    (18)  

 IAR experiments allow separate estimation of 
unsteady acceleration terms. In this case, the unsteady 
term in the more general model (last term in (3)) 
provides estimates that compare directly to those 
estimated from the IAR experiment. This experiment is 
a modification of the traditional rotary balance testing 
where the axis of rotation is inclined from the velocity 
vector by an angle λ. During the experiment the 
rotational velocity, Ω, remains constant, whereas the 
angle of attack and sideslip oscillate. For small 
inclination λ, the changes in α and β are defined as 

0( ) cos
( ) sin
t t
t t

α α λ
β λ

= + Ω

= Ω
  (19) 

From the output data the frequency dependent 
parameters AC α and AC β  (where CA is one of the 

aerodynamic forces or moments) can be estimated.  
With a linear aerodynamic model assumed to be given 
as  

 ( ) ( , , , )L LC t C α β α β=   (20) 

and assuming small λ, the response (using lift 
coefficient as an example) in terms of in-phase and 
out-of-phase harmonic components can be written as 

 cos sinL L LC C t C tα βλ ω λ ω= +  (21) 

where 
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As described in reference [5], by performing 
oscillatory coning in both Ω+ and Ω- directions, 
frequency dependent parameters can be estimated as 

 
[ ] /(2 )

[ ] /(2 )

L L L

L L L

C C C

C C C

α β β

α αβ

+ −

+ −

= − − Ω

= + − Ω
        (23) 

With unsteady terms estimated from oscillatory coning, 
it is possible to separate steady-flow damping 
derivatives from the combined out-of-phase damping 
coefficients determined in conventional forced-
oscillation experiments. 

 The last validation test checks the unsteady model 
estimates of force or moment derivatives with respect 
to α or β, CAα or CAβ respectively. This parameter (first 
term in (3)) can be directly compared to that obtained 
from static measurements. Comparable values from the 
two methods provide further validation that the 
identification process is working correctly. 

 Another test technique, requiring a test capability 
not available for this study, is an experiment with 
direct heave or sideslip motion. In oscillatory heave 
and sideslip testing 

0( ) sin
( ) sin

A

A

t t
t t

α α α ω
β β ω

= +

=
  (24) 

Using the model structure in (20) and application of 
harmonic analysis (11), estimates in-phase and out-of-
phase coefficients can be obtained. From these results 

AC α and AC β  can be determined. 

Experiments 
 Advanced dynamic tests were conducted in the 
Rolling Hills Research Company Water Tunnel in 
order to apply and validate the methodology presented 
in [2].  For these tests a 2.5% scale model of the F-
16XL (figure 1) was mounted on a dynamic test rig 
through a five-component strain-gauge balance (axial 
force was not measured).  The dynamic test rig is a 
computer-controlled system with a sting-mounted 
double C-strut support system [3].  The mounting 
arrangement rotated the model about the reference 
center of gravity location of 0.558 c . The tests were 
conducted at a dynamic pressure of 0.81 psf resulting 
in the flow velocity of 11 inches/sec and a Reynolds 
number of 52x103 based on the mean aerodynamic 
chord. Reynolds number values different from that 
found in flight or wind tunnels are acceptable for this 
study since the methodology is both applied and 

validated using the same water tunnel conditions. With 
this relaxed requirement, hydrodynamic flow at the 
inlet was improved by adding an inlet fairing to block 
flow into the inlet. Flow visualization and 
measurement equipment inside the model did not allow 
enough space for smooth flow through the body. 

 Application of the methodology under test 
required wide-band forced oscillation experiments. 
Wide-band oscillatory data were created using 
Schroeder sweeps in α as an input. Tests were 
conducted at 17 mean values of angle of attack, α0, 
using an amplitude αA = 5 degrees. The range of α-
mean values was from α0 = 0 to 75 degrees. Data were 
sampled at 10 Hz with a lowpass analog filter at 5 Hz. 
Tests were repeated eleven times at each angle of 
attack and then an average signal was formed using the 
ensemble data to minimize measurement noise. The 
ensemble-averaged data was used for data analysis. 

 Validation data were created using the same test 
rig and instrumentation as that used for the wide-band 
data. For this paper, only small amplitude ramps and 
oscillatory motions are considered. In both cases αA = 
5 degrees. Ramp inputs were generated for three 
different non-dimensional pitch rates, (0.01, 0.02, 
0.03), starting at five different α0 ranging from 30 to 
50 degrees. Sinusoidal, single-frequency, forced-
oscillation data were created at five different non-
dimensional frequencies, (0.05, 0.10, 0.15, 0.20, 0.25), 
and at five mean α0, ranging from 20 to 60 degrees. 
Inclined-axis oscillatory coning experiments were run 
for λ equal to 5 degrees. These tests were completed 
for four non-dimensional rotation rates, Ωb/2V = (0.05, 
0.10, 0.15,0.20), and α0 up to 35 degrees. 

 Example time histories of input/output data for 
application of the methodology are shown in figure 2. 
Angle of attack, normal force and pitching moment 
coefficients, α, CN, and Cm, at α0 = 30 degrees are 
presented. These plots show displacements relative to 
starting values at α0. The harmonic content of the angle 
of attack is shown in figure 3 as a function of 
frequency. Figure 3 indicates a flat spectrum for a 
frequencies up to 0.2 Hz which corresponds to reduced 
frequencies up to k = 0.42. For the analysis, time 
histories of inputs and aerodynamic coefficients were 
transformed to the frequency domain using a DFT 
algorithm over the frequency range of 0.003 to 0.2 Hz.  

 Example time histories of input/output data for 
validation are shown in figures 4 and 5. Figure 4 
provides example measurements α, CN, and Cm for 
conventional forced oscillation (FO) data. This 
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example is for oscillations about αo = 30 degrees and at 
frequencies of k = 0.25 (f = 0.118 Hz). For these 
experiments 30 cycles of data were recorded for each 
run. An average over all cycles, forming one cycle, is 
shown in the figure. Figure 5 shows φ, α, β, CN, and 
Cm time histories for IAR runs at αo = 35 degrees. 
Bank angle, φ, indicates that the model undergoes 
rotations in the positive direction followed by the same 
steady rotations in the negative direction. In this 
example, rotation rate is 25.9 deg/sec producing 
oscillation periods for α and β of approximately 13.9 
seconds and Ωb/2V = 0.2. Similar results were 
obtained for side force, rolling and yawing moments. 
For IAR tests ensemble averages were formed using 15 
repetitions of the experiment. 

Results and Discussion 
 For this paper, methodology validation was 
limited to longitudinal low-amplitude forced-
oscillation data and only test cases for angle of attack 
between 30 and 70 degrees were considered. Unsteady 
effects, for this water-tunnel model, primarily occur for 
30<α<50 degrees, as will be shown by considering the 
in-phase and out-of-phase coefficients (figure 10). 

 Both identification methods used in the first 
validation test require transformation of the data to a 
frequency domain representation. The method in [2], 
based on Maximum Likelihood (ML), uses input and 
output measurements of the experiments almost 
directly except for the DFT applied to the data. The 2-
Step Regression approach [4] requires estimates of the 
in-phase and out-of-phase coefficients as inputs, thus 
some data processing is also required before 
application of the method. In order to minimize data 
processing a simple method was chosen to obtain these 
coefficients. Forming transfer function (16) directly by 
dividing outputs CN(ω) by inputs α(ω) in the frequency 
domain, the coefficients could be obtained using (17) 
and (18). This method produces a relatively noisy 
frequency response function; however, sufficient 
information content and signal-to-noise ratio are 
present for the analysis. Because of this approach the 
2-Step Regression method produced relatively larger 
standard errors, reflecting more on the quality of the 
inputs rather than the identification method, itself.  

 Figure 6 shows the estimates of the four unsteady 
model parameters obtained by ML and 2-Step methods. 
Circles indicate ML estimates and solid lines are used 
to show the trends between points. The 2σ error 
bounds are also plotted as solid vertical lines. 2-Step 
estimates are marked by “x” with dotted lines showing 

both trends between points and 2σ bounds. In the top 
graph for α between 30 and 50 degrees, mean values 
for CNα are in good agreement between the two 
methods. The differences at higher alphas reflect the 
limited unsteady information content in the data. The 
model structure, used in both approaches, assumes the 
presence of unsteady dynamics. This problem is 
reflected in the tendency for larger error bounds above 
α = 50 degrees for all the estimated parameters. For the 
CNq term similar results occurred, except the 2-Step 
method produced unrealistic negative values above 50 
degrees angle of attack. This is likely the result of 
limited unsteady dynamics further aggravated by the 
poor signal-to-noise ratio. A similar plot is obtained for 
the model parameter “a” except the ML method is also 
producing larger error bounds for the higher alphas. 
Mean values from the ML method are consistent with 
expectations that the parameter “a” will become small 
as unsteady behavior reduces for α > 50 degrees.  In 
water tunnel facilities motions have much longer time 
constants than wind tunnels. Consequently the transfer 
function parameter, b1, for the unsteady model is very 
small. Mean values agree very well between the two 
methods and the larger error bounds for the 2-Step 
method reflect the less desirable input data. Mean 
value of b1 over the range 30<α<50 is approximately 
0.168. 

 An indication that an adequate model has been 
determined is shown by the ability to predict responses 
using data that was not used for identification. Figures 
8 and 9 provide this type of validation data. In 
addition, these figures show inputs α(t) and q(t), as 
well as transient behavior of state, η(t), defined in (4). 
Figure 8 shows a representative example of measured 
and predicted responses of CN to ramp-and-hold inputs 
performed at different pitch rates. For the example in 
figure 8, the unsteady model estimated at α0 = 42.5 
degrees is used to model a ramp from α = 40 to 45 
degrees. The maximum pitch rate achieved during the 
ramp was / 2 0.03qc V = or approximately 5 deg/sec 
(model scale).  Figure 9 shows a representative 
example of the unsteady model (at α0 = 40 degrees) 
predicting harmonic response of CN during 
conventional forced oscillation. For this comparison, 
the third cycle of oscillation is compared with the 
measured data to allow start-up transients to die out. 
For this example the harmonic input has a reduced 
frequency of k = 0.2 and an amplitude of 5 degrees. 

 The third set of validation tests allow various 
parameters to be estimated and compared with the 
general unsteady model. In-phase and out-of-phase 
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coefficients (Fourier coefficients) defined by (11) can 
be obtained from conventional, single-frequency (SF), 
forced-oscillation data. The same parameters can be 
estimated from the general model by using (17-18). 
This comparison is shown in figure 10 for three 
reduced frequencies. The general unsteady model 
results are provided over the α range shown, however 
the coefficients from SF forced-oscillation data are 
only computed at α = (20, 30, 40, 50, 60) degrees and 
are shown as triangles. This figure shows the strong 
frequency dependence or unsteady behavior of the 
aerodynamics for α greater than 30 degrees and less 
than 50 degrees. The agreement between the two 
modeling methods is very good within the range of α 
where unsteady behavior occurs. At α0 = 30 degrees, 
where little unsteady behavior occurs, only a small 
difference is apparent.  

 Oscillatory coning or IAR experiments produced 
data shown in figure 5. The advantage of harmonic 
IAR experiments is that unsteady acceleration terms 
can be readily extracted from this type of data. The 
dynamic rig in this example is capable of 
approximately 406 degrees of rotation before the wires 
leading to the balance reach their limits. Consequently, 
the motion begins at a minimum φ = –406 degrees and 
continues until a maximum of φ = +406 degrees. At 
this point the rig must stop and reverse direction. It 
appears that the measured responses may not be in 
steady harmonic motion since the lower peaks of CN 
are changing with each cycle. This implies that the 
initial transient has not decayed sufficiently to reach 
steady harmonic oscillation where each peak would 
have approximately the same amplitude. The analysis 
defined in (23) assumes steady harmonic data and 
therefore is not appropriate for this type of data. A 
transient analysis of this data will be part of the next 
phase of this study and comparisons can then be made 
with results using the ML methodology in [2]. Figure 
11shows estimates of ( , )NC k

α
α  from the WB 

experiment using the ML approach. This can be 
considered as the unsteady equivalent to the 
conventional derivative, / ( / 2 )NC c Vα∂ ∂ .  

 To demonstrate the harmonic analysis proposed 
in [5] for IAR experiments, representative model 
parameters were chosen and simulated data were 
prepared as shown in figure 12. Time histories of α, β, 
and CN are shown for steady harmonic motion in both 
the positive and negative roll directions. Oscillations 
occur at a reduced frequency of k = ωb/2V = 0.05. A 
moderate amount of noise was added to the 

measurements of CN to simulate realistic tunnel data. 
Parameter true values, θ , for the IAR model (20) and 
estimates, θ̂ , of the acceleration terms are given in the 
table below. 

 NC α  NC β  NC β  NC α  

θ  1.0 -0.3 5.0 18.0 

θ̂  --- --- 4.98 17.87 

 The top half of figure 13 shows mean values for 5 
repeated measurements of static CN with 2σ error 
bounds. The second graph shows the corresponding 
mean values and 2σ bounds for CNα estimated by the 
general unsteady model and by a simple gradient 
method using the static data above. The two methods 
generally agree well and have reasonable error bounds. 
Although some difference in mean values occur at α = 
40 degrees where a steep gradient occurs in CN. This is 
not surprising since the gradient can vary sharply in 
this region and this is a region of peak unsteady 
behavior. Some unsteady behavior was observed 
during static measurements as well. 

Concluding Remarks 
This study is part of an ongoing effort at NASA 
Langley to develop a more general formulation of the 
aerodynamic model for aircraft that includes nonlinear 
unsteady aerodynamics. In this study independent 
identification methods and a series of different 
dynamic tests were used to show the validity of a 
methodology for modeling and testing to estimate 
linear unsteady models for aircraft. Independent 
identification methods applied to the same wide-band 
data produced the same model parameter values 
indicating legitimacy of the two approaches. The 
unsteady model successfully predicted transient 
dynamics that occurred in ramp and hold as well as 
harmonic experiments providing validation that the 
methodology produces an adequate model. Static 
derivatives and Fourier coefficients were well 
predicted by the model further validating the 
methodology for modeling unsteady aircraft behavior. 
Simulated inclined-axis results demonstrated a 
technique for estimating unsteady acceleration terms. 
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Figure 1. Three-view drawing of 2.5% F-16XL model. 
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Figure 2.  Time histories of angle of attack, lift, and 
pitch-moment coefficients for α0=30 degrees during 

wide-band input exeperiment in water tunnel. 
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Figure 3.  Harmonic content of transformed α wide-

band input for α0 = 30 degrees in water tunnel.  
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Figure 4. Conventional FO experiment measurements 

at k = 0.25 and αo = 30 degrees.  

0 10 20 30 40 50 60 70
−500

0

500

φ 
(d

eg
)

0 10 20 30 40 50 60 70
30

35

40

α 
(d

eg
)

0 10 20 30 40 50 60 70
−5

0

5

β 
(d

eg
)

 0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70
0.15

0.2

0.25

C
m

0 10 20 30 40 50 60 70
1

1.5

2

C
N

time (sec)  
Figure 5. Input and output measurements for IAR 

experiments at k=0.2 and αo = 35 degrees. 
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Figure 6. Estimated parameters and their 2σ confidence 
bounds for Normal force coefficient. 
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Figure 8. Measured and predicted CN(t) for ramp input 

at non-dimensional maximum pitch rate = 0.03. 

0 2 4 6 8 10 12
−5

0

5

10

α(
t)

),
 q

(t
) α(t) (deg)

q(t) (deg/sec)

0 2 4 6 8 10 12
−0.1

0

0.1

η(
t)

0 2 4 6 8 10 12
1

1.5

2

C
N
(t

)

time (sec)

predicted
measured

 
Figure 9. Measured and predicted CN(t) for harmonic 

input at k = 0.2, and αA = 5 deg. 
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Figure 10. In-phase and out-of-phase coefficients 

estimated from wide-band and single harmonic data.  
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Figure 11. Variation of NC α with α and k. 
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Figure 12. Input and output measurements for IAR 

simulated experiment at k=0.04 and αo = 35 degrees. 

20 25 30 35 40 45 50 55 60 65
0.5

1

1.5

2

C
N

20 25 30 35 40 45 50 55 60 65
−5

0

5

C
N

α

α (deg)

static data
indicial model

 
Figure 13. CNα estimated from wide-band data and 

static data. 
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